On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm
نویسندگان
چکیده
The combination of Fuzzy Logics and Description Logics (DLs) has been investigated for at least two decades because such fuzzy DLs can be used to formalize imprecise concepts. In particular, tableau algorithms for crisp Description Logics have been extended to reason also with their fuzzy counterparts. Recently, it has been shown that, in the presence of general concept inclusion axioms (GCIs), some of these fuzzy DLs actually do not have the finite model property, thus throwing doubt on the correctness of tableau algorithm for which it was claimed that they can handle fuzzy DLs with GCIs. In a previous paper, we have shown that these doubts are indeed justified, by proving that a certain fuzzy DL with product t-norm and involutive negation is undecidable. In the present paper, we show that undecidability also holds if we consider a t-norm-based fuzzy DL where disjunction and involutive negation are replaced by the constructor implication, which is interpreted as the residuum. The only condition on the t-norm is that it is a continuous t-norm “starting” with the product t-norm, which covers an uncountable family of t-norms.
منابع مشابه
On the Undecidability of Fuzzy Description Logics with GCIs with Lukasiewicz t-norm
Recently there have been some unexpected results concerning Fuzzy Description Logics (FDLs) with General Concept Inclusions (GCIs). They show that, unlike the classical case, the DL ALC with GCIs does not have the finite model property under Lukasiewicz Logic or Product Logic and, specifically, knowledge base satisfiability is an undecidable problem for Product Logic. We complete here the analy...
متن کاملOn the Decidability Status of Fuzzy ALC with General Concept Inclusions
The combination of Fuzzy Logics and Description Logics (DLs) has been investigated for at least two decades because such fuzzy DLs can be used to formalize imprecise concepts. In particular, tableau algorithms for crisp Description Logics have been extended to reason also with their fuzzy counterparts. It has turned out, however, that in the presence of general concept inclusion axioms (GCIs) t...
متن کاملGCIs Make Reasoning in Fuzzy DL with the Product T-norm Undecidable
Fuzzy variants of Description Logics (DLs) were introduced in order to deal with applications where not all concepts can be defined in a precise way. A great variety of fuzzy DLs have been investigated in the literature [12,8]. In fact, compared to crisp DLs, fuzzy DLs offer an additional degree of freedom when defining their expressiveness: in addition to deciding which concept constructors (l...
متن کاملNon-Gödel Negation Makes Unwitnessed Consistency Undecidable
Recent results show that ontology consistency is undecidable for a wide variety of fuzzy Description Logics (DLs). Most notably, undecidability arises for a family of inexpressive fuzzy DLs using only conjunction, existential restrictions, and residual negation, even if the ontology itself is crisp. All those results depend on restricting reasoning to witnessed models. In this paper, we show th...
متن کاملGeneral Concept Inclusions in Fuzzy Description Logics
Fuzzy Description Logics (fuzzy DLs) have been proposed as a language to describe structured knowledge with vague concepts. A major theoretical and computational limitation so far is the inability to deal with General Concept Inclusions (GCIs), which is an important feature of classical DLs. In this paper, we address this issue and develop a calculus for fuzzy DLs with GCIs.
متن کامل